Software development: Science or Patchwork?

by Robert L. Baber

Abstract

In the past, software development has been variously described as a sci-
ence, art, craft, trade, racket, etc. Even today opinions vary consider-
ably about how software should be developed and what qualifications
are most appropriate for software developers.

In this paper a series of case examples illustrates the problematic
state of affairs in the field of software development today. Many of
these examples also illustrate the often overlooked potential and practi-
cal value of a mathematically oriented approach to solving software
developmental probiems.

The spectrum of possible software worlds of the future is character-
ized by its three extremes: an audacious (reckless), a backward (reac-
tionary) and a celestial (radical) software future. The paths leading to
each of these extremes and the prerequisites for achieving a significantly
better future are discussed.

In this paper it is argued that the detailed specification, design and
development of computer software is by nature an engineering field
with mathematics as an important theoretical foundation. In practice,
however, software development is too often treated today as patchwork.
It is too often conducted by underqualified personnel instead of by pro-
fessionally educated engineers. These are the major causes of the many
problems and disappointments that we have been and still are
experiencing in applying computer systems.

1. Prologue: the land of Moc

Imagine that you are living in an ancient country in the cradle of civilization.
The time is about 2500 B.C. In the course of the years an active foreign trade
has developed and several cities have been founded. A construction industry
has been established in which professionally trained architects and civil
engineers play an important role.

Suddenly and unexpectedly, a group of teachers of civil engineering
develop a new technique for designing buildings. Using the new method,
buildings can be designed and built which are much larger than those previ-
ously possible. Perhaps even more importantly, the new method reduces con-
struction costs to about a tenth of their former levels.

As a consequence, the demand for buildings of all types increases very
rapidly. The construction industry grows correspondingly. But new architects
and civil engineers cannot be educated so quickly. Nor can the capacity of
the civil engineering colleges be expanded sufficiently rapidly. Nevertheless, a

18



solution is found: New construction planners are trained in special short
courses conducted by the suppliers of building materials. In this way the
quantitative gap between supply and demand is bridged.

The application of this advanced technology is not without its dark side,
however. Because the new ‘three week wonders’ (as the professionally trained
designers contemptuously label their minimally trained colleagues) only
superficially understand the theory underlying their designs, minor catas-
trophes are common. All too often the three week wonders rely on ‘trial and
error’ (instead of theoretically based calculations) in order to determine if a
proposed design will collapse or not.

Insufficient
professional
educational
capacity
High and ediate Underqualified
demand for o
- practitioners
practitioners
Unsatisfied Low productivity,
demand for high collapse
services S rate

Fig. 1. The Mocsian vicious circle

19



The result of this ‘trial and error’ approach is not really surprising: about
30% of all newly designed buildings collapse during construction. As an elo-
quent professional once put it as he arrived at the scene of a particularly
spectacular collapse, ‘rubbish in, rubble out’. The rubbish was the design
prepared by a three week wonder; the rubble, an incredible quantity of debris
which shortly before had been a wondrous building under construction.

To combat the problem of collapses during construction, elaborate testing
schemes have been worked out. These do not solve the problems, of course,
but they do tend to limit the negative consequences of the frequent collapses.
The test procedures are expensive — causing as much as half of the total
construction costs. Nevertheless, there is clearly a net economic benefit for
the Mocsian society of using the new design technique.

Although the shortcomings of current design practice are widely recog-
nized, this modus operandi appears to be firmly established. Prospective new
designers prefer a short, cursory, practical training instead of a professional
course of study lasting several years because they can thereby begin earning
good money earlier. And most of the professionally trained architects and
engineers, from whose ranks teachers could come, prefer a more lucrative
professional practice over a career in teaching.

As a result, the fraction of professionals among the building designers in
the land of Moc is declining. This is, in turn, causing a corresponding decline
in the quality of Moc’s building planners, a decline in productivity, a still
larger gap between supply and demand and a demand for more building
designers, even underqualified ones. Thus, as shown in fig. 1, the vicious cir-
cle is closed.

2. Moc Today

The story of the land of Moc is obviously pure fiction. Such a ridiculous
story could never be true. Or could it? It is my thesis that the story of the
land of Moc is true. The time is not 4500 years ago, but the present. The
true story does not concern an ancient construction industry in the cradle of
civilization, but our modern computer software industry in the most
‘advanced’ countries in the world.

Software development today is plagued by many — too many — unneces-
sary collapses. From time to time we read about some of these collapses. But
many more go generally unnoticed because they occur so frequently that they
cannot be considered unusual. Design by ‘trial and error’ (following the Moc-
sian motto ‘try building it and see if it collapses’) has become commonplace.
In order to limit to some extent the effect of our failures we conduct an
incredible amount of ‘testing’ (a euphemism for finding and correcting mis-
takes). Typically, ‘testing’ accounts for half of the effort expended in a
software development project.

What has caused this situation? Advances in the computer area have been
made so rapidly that we still have difficulty absorbing them — although com-
puter systems are, after several decades, nothing new. Especially our

20



educational programs have not kept pace with developments on the computer
scene. Our concentration on short term problems and solutions has prevented
us from building a solid, optimum base for the long term.
Why has this state of affairs become so accepted? The computer is a funda-
mentally new tool so useful that even when sloppily applied by beginners and
amateurs, the net benefit — after due consideration of the collapses — is still
very great. We believe that the benefits realized are due to our own good
efforts. In reality, we have, more or less by accident, stumbled onto a good
thing. We could and should endeavor to make much more of this good thing
in the future than we are now doing.
In my opinion software development is by nature an engineering discipline.
The more successful developers of challenging software systems apply
mathematical and scientific knowledge when specifying, designing and imple-
menting their systems. They proceed in a systematic manner, whereby
creative aspects of their work an be recognized — just as in already recog-
nized engineering fields.
Unfortunately, an engineering approach is not characteristic of typical
software developments today. The following examples illustrate the conse-
quences of this deficiency. They also show some of the advantages of a
mathematically and scientifically founded approach to software development.
The examples are in chronological order.
© In the mid 1950’s a course in computer programming was offered to
advanced students at a particular engineering school. A sophomore
applied to enroll in the course. After initial hesitation, the professor
granted his request.

® Two years later, a course in computing was offered to freshmen. As
many as 10% of the freshmen were expected to enroll. At least twice as
many actually applied. The number of instructors available was hope-
lessly insufficient to meet the demand. It was assumed, of course, that
this large gap between supply and demand for the education of software
specialists was only a temporary phenomenon. Little did they know.

© In the early 1960’s in one country’s defense establishment, a series of
programs printed a long classified report. Because of logical flaws in the
programs’ printing routines, a few pages would, from time to time, be
printed which included the security legend at the top or bottom but no
data. They could not be deleted from the report without introducing a
discrepancy in the page count. It was necessary, therefore, to register and
retain the “TOP SECRET’ blank pages.

® A major computer manufacturer installed several very large, fast com-
puters. When it was discovered that the systems operated unreliably,
many customers withheld their monthly rental payments. The manufac-
turer soon solved the hardware problems, but despite many corrections
and revisions the operating system remained unreliable. The
manufacturer’s liquidity became very strained; some observers of the
industry expected the company to become insolvent. Finally, large

21



infusions of loan capital enabled the supplier to remain in business while
the errors in the system were being corrected.

In a large information system, data relating to individual persons was
indexed by the person’s name. A method was required for locating data
on a particular person even when the name was misspelled. This was to
be accomplished by transforming the name into an abbreviation in such
a way that typical misspellings transformed to the same abbreviation.
Several rules for forming the abbreviations were to be investigated. A
logically complex program was written to test the first rule. Whenever
the programmer corrected one error, another appeared in its stead.
After several months, the project manager asked a consultant for assis-
tance.

The consultant noticed that a transformation of names was
homomorphic to (and could therefore be represented by) a finite automa-
ton with a small number of states. He suggested expressing each abbrevi-
ation rule in the form of a transition table and writing a single table
driven program to simulate the automaton defined by the table for each
rule. In the attempt to construct the table for the rule already pro-
grammed, a logical inconsistency in the rule was discovered. After the
rule was corrected, this approach led quickly to success.

In this example the method of ‘trial and error’ could never have led to a
successful result, because the programmer had been trying to program an
unprogrammable (logically inconsistent) task. In addition, the conven-
tional programming approach, even if successful, would have been very
inefficient, involving several complicated programs instead of one
smaller, simple one and a few tables, each one page long.

One company in the new world decided in the mid-1960’s to implement
a truly integrated information system. About 5 years later, around the
turn of the decade, shortly before the planned implementation of the sys-
tem, the project was abandoned. Only a few small parts of the system
could be salvaged and used productively. Several higher level managers
left the company, some willing, some not. The loss was estimated to be
about $ 10 million. In the following years, the electronic data processing
pendulum swung to the other, conservative extreme in this company.
Many economically justifiable electronic data processing applications
were overlooked or intentionally rejected. The opportunity cost of these
potential applications was never estimated but was certainly substantial.
In the early 1970’s the old world was generally considered to be some
years behind the new in matters concerning electronic data processing.
Unfortunately, this was not the case when it came to creating spectacular
collapses. Shortly after the collapse outlined above became known,
almost the same occurred in a European country. In both cases unsatis-
factory communication and lack of mutual understanding between the
developers, users and management as well as exaggerated optimism were
important reasons for the expensive failures.

22



In another firm a software system for sales forecasting was designed and
implemented. Several programs, which were obtained from the
computer’s manufacturer, had allegedly been successfully used earlier in
other companies. During implementation, errors were discovered in
several of these programs. One of the errors represented a fundamental
oversight in the mathematical analysis of the statistical forecasting model
upon which the program was based.

Earlier, the occurrence of such errors was assumed to represent a transi-
tory phenomenon. Slowly one began to recognize that this was not the
case. The fact that a program had been used successfully by others could
no longer be interpreted as evidence of its correctness.

An inventory control system was developed to satisfy the needs of a par-
ticular company. For this system, a set of formulae was developed which
could be solved only by iterative approximation. Although preliminary
tests gave no indication of potential problems, one member of the team
was concerned that the iterative method might not always converge or
that it might sometimes converge to an undesired solution. A lengthy
mathematical analysis showed that no such problems would arise in the
case at hand, but that a particular kind of non-linear interpolation in a
table was required in one part of the computation.

Another member of the development team was concerned about the pos-
sible consequences of the unavoidable delays in the man-machine com-
munication in this batch system. The desired behavior of the system was
formulated as a specification of an automaton. (See Baber [2], pp. 166-
167, for further details.) During the necessary discussions between the
system’s designers and future users, a number of possible sequences of
events came to light which no one had considered before and which
forced the users to think through in detail what they really wanted from
the system. The resulting specification was implemented successfully and
employed for many years.

A data base system was planned as the basis for an order processing sys-
tem. After detailed investigations were conducted, the software system
and the data organization were selected. From the outset, some members
of the project team were concerned about the system’s response time, but
initial analysis indicated that this would probably not be a significant
problem.

During implementation of the system another — insoluble — problem
arose: As the data base was built up, it was noticed that the time
required to load additional data increased very rapidly. It became clear
that just loading the complete data base would require a year or so of
computer time. The response time also became problematic, although it
was less serious. The project was abandoned in the implementation
phase, after design and programming were complete, and the history of
software development was enriched with another collapse.

This failure could have been avoided. Without undue difficulty, one

23



could have determined the time complexity of the required functions
using the selected data organization — before expending any significant
developmental effort. Probably, no member of the development team
even knew about the concept of computational complexity. A bent for
quantitative analysis was apparently also lacking, for even without
knowledge of complexity theory one could have estimated the time
characteristics of the data base system.

While designing a relatively straightforward application system, a system
analyst was forced by arbitrary limits in the system software to make use
of linked list techniques in organizing a data file. During the program-
ming phase difficulties arose because the programmers, among them a
graduate of computing science, had no experience with linked lists.

This example shows the value of a theoretical background: without
knowledge of linked lists, the analyst would have been unable to solve
the problem at hand using the given computer system. This example also
illustrates that today’s computing science education leaves much to be
desired, for the graduate was unfamiliar with a method of data organiza-
tion which is basic, well known in professional literature and often used
in system software.

An experienced free lance programmer contracted to write a particular
program for a software house. The program was to run on a machine
with which the programmer had no prior experience. After reading the
manual, he still had some questions regarding commonly used input-
output functions. He turned to a specialist for that machine for
clarification. The specialist could not answer his questions. The pro-
grammer asked the specialist how he resolved such problems. The spe-
cialist replied, ‘I just keep trying until something works.” The program-
mer was not satisfied with his advice. He used only those commands
which were unambiguously described in the manual. His program was
perhaps not so elegant as it might have been, but it worked reliably. The
same could not be said for the specialist’s programs.

Although the ‘trial and error’ method often leads to unsatisfactory results
(or even to no results at all), it is still used again and again.

The manager of a production planning department asked an electronic
data processing specialist with a mathematical inclination to investigate
the feasibility of optimizing a regularly recurring task of his department.
The goal was to schedule the production of a particular product so that
the amount of scrap generated would be minimized. The specialist inves-
tigated several mathematical methods such as integer programming. He
concluded that all of these methods were infeasible in the given situation
due to their computational complexity. During his investigation, how-
ever, he discovered a heuristic algorithm which usually gave optimum
results. He programmed this algorithm on a small microcomputer which
was purchased solely for this application. His system was used success-
fully for a long time.

24



Again, a combination of theoretical knowledge and a sense of what is
needed in practice seems to be associated with success.

In the early 1980’s a world wide transportation company contracted with
an important computer manufacturer for the development of customized
software for an integrated fleet operations and accounting system. Two
years later, shortly before key elements of the system were to be
installed, the supplier announced that it had discontinued the project and
would not deliver the application software.

After the collapses in the old and new worlds, this was bound to happen
sooner or later.

An error in a computerized defense control system resulted in a false
report of an enemy attack. Interceptors were launched. Fortunately, the
error was discovered in time.

After many years we are still building errors into our computer systems.
But with time the potential consequences of these errors are becoming
more serious and irreversible. They are not so comical as the ‘TOP
SECRET’ blank pages of years before.

An experienced software system designer developed a software system
for a management game for a client. The structure of the game required
that decisions be made by each team of players (representing competing
companies) for successive time periods. To fit into the environment
within which the game was to be played, it was necessary that the com-
puter program could be interrupted at several points within each time
period and restarted later at that or an earlier point in the game. In
order to enable this mode of operation, the players’ decisions were stored
in separate files by team and by time period; data specifying the state of
the game were stored in a ‘run control file’.

The designer, convinced that the logic of the interactive control program
would be fairly simple, began to write it without planning its structure in
detail. After several false starts and several hours wasted, he decided to
start all over and do the job properly. He began by specifying the asser-
tions (logical conditions) which the values of the various variables
defining the state of the game would have to satisfy at all times. Sup-
ported by these eight assertions (program invariants) and knowing the
intended ‘variant’ action — advancing to the next time period as soon as
the prerequisites (implied by the invariants) were established — he was
able to write the control program in a straightforward manner. As he
originally expected, the program turned out to be logically simple. His
successful approach took less time than he had already wasted on the
false starts.

If a mathematically oriented approach can yield such benefits even in the
case of small, logically simple programs, how can one afford not to take
such an approach when developing complex software systems?

25



Computer courses are being introduced into secondary schools in many
countries. The better prepared teachers of these classes took one or two
courses in computing subjects in college; many have had no formal
training in computing. Teachers of other subjects are required to have
completed a much more extensive training in their fields (cf. mathemat-
ics, languages, history, sciences, etc.). Why is informatics treated in this
very different — even irresponsible — way?

A seminar on advanced topics in programming methodology for software
developers and research scientists was arranged. The number of applica-
tions greatly exceeded the expectations of the organizers and, of course,
the planned capacity. Many qualified applicants had to be rejected. After
a quarter century a very considerable gap between supply and demand
for computing science education still exists (cf. the course offered to
freshmen at the engineering school above).

Because of an error in software an unmanned space ship was lost in deep
space.

In the field of informatics at universities in the Federal Republic of Ger-
many the ratio of students to faculty has grown to 100:1 [12]. Potential
students are interested in studying this subject and companies are very
interested in employing all graduates. Still this great — probably unpre-
cedented — discrepancy between supply and demand for informatics
education prevails. While the Federal Republic of Germany may be an
extreme example in this regard, this problem is by no means a uniquely
German one. Neither is this a new problem which has suddenly
appeared. One could and should have seen it coming. Many have seen it
coming for many years.

What is wrong with the current situation?

Because the net benefits resulting from applications of computer systems are
so great, one might ask: ‘What is really so bad about the current state of
affairs? We are producing large quantities of software which is of consider-
able value to its users. As long as this situation prevails, we do not really
have a problem.” There are, however, a number of serious negative conse-
quences of our current approach to software development:

The consequences of errors in software are becoming more costly, more
dangerous and more irreversible.

Major and unnecessary failures, mishaps and attendant losses occur too
frequently.

The total cost of our software systems (including the costs associated
with failures and their consequences) are unnecessarily high.

We are obtaining much less benefit from computer technology than is
potentially possible.

A large gap exists between supply and demand in the software market.
This gap represents an economic loss (opportunity cost).

26



Negative consequences and losses caused by errors in software are often
shifted unfairly onto persons who are not responsible for those errors,
who have no control over the situation and who cannot protect them-
selves from the consequences of such errors.

Software products are often characterized by disappointing quality.
Errors in software are often of a rather simple nature.

Productivity in software development leaves much to be desired.

Scarce resources are wasted in unsuccessful projects.

Unreliable systems frustrate and confuse laymen and shake their
confidence in applications of computer technology.

Why do we have these problems?
There are several different but related causes of the problems outlined above:

The transfer of knowledge and experience from one generation of
software practitioners to the next is not functioning satisfactorily. This
applies to both practical and theoretical knowledge. In other words, our
educational system is not achieving its objectives.

Only a small fraction of software developers has a command of the
scientific knowledge of computing science as well as of the application
area for which they develop software. Educational programs were and
are quantitatively and qualitatively insufficient.

A great communication gap exists between the practical and theoretical
worlds of informatics. This statement applies to a certain extent to all
areas of applied science, but it is particularly true of software develop-
ment today. Many practitioners do not understand the basic language of
the theoretician (= mathematics) and many theoreticians exhibit little or
no interest in the problems and work of the practitioner.

“Trial and error’ appears to be a widely accepted method for designing
and developing software.

Software developers rely much too heavily upon ‘testing’ instead of get-
ting their designs correct in the first place. Especially in this regard does
a mathematically oriented approach and way of thinking offer consider-
able promise for improvement.

The frequency and consequences of errors in software systems suggest a
lack of sense of responsibility on the part of the developers (and some-
times of the users). Perhaps the developers are mentally fully occupied
with the technical details of their designs. Perhaps this is due, in turn, to
an inadequate understanding and command of those technicalities.

The proper place of informatics in the academic world is still unclear.
Particularly when one compares the position of informatics in universi-
ties in different countries does the full variety of organizational forms
become apparent: as part of mathematics, electrical engineering, business
or economics or as an independent department in a faculty of natural
science, engineering or economics, with or without smaller branches in
the various departments representing the fields of application of com-
puter systems.

27



© FEconomic forces induce potential professors of informatics to become
practitioners instead. Potential students are induced to become poorly
prepared ‘system analysts’ and coding technicians today instead of good
software engineers tomorrow. Income and success in the short term are
overemphasized; potentially greater income and success in the longer
term future are largely neglected.
Our software situation today is, it seems, very much like that of the Moc-
sian construction industry. The most unsettling aspect is that — just as in
Moc — a stable vicious circle has arisen (fig. 2).

Insufficient
professional
educational
capacity
High and immediate Underqualified
demand for
software
software ractitioners
practitioners p
Unsatisfied Low productivity,
demand for high collapse
software S rate

Fig. 2. Our contemporary vicious circle

28



3. Software development tomorrow?

The nature of the software world of the future will be determined by many
factors, the most important of which are our own choices and decisions
regarding what sort of a future we desire. I will not, therefore, attempt to
forecast the characteristics of our software future. Instead, I will outline the
alternatives among which we can — and, explicitly or implicitly, will —
choose.

The set of possible software worlds of the future form a continuum charac-
terized by its three extreme points. Each possible software future can be
thought of as a convex combination of these three extremes, called Future A,
B and C below. The point representing our software future will be deter-
mined by the average level of professional competence achieved by software
practitioners and by the complexity of the applications attempted (fig. 3).

radical
Future C

science

software
development

Today

patchwork

Future A Future B
reckless reactionary

advanced applications limited
high collapse rate low

Fig. 3. Possible software futures

29



In the audacious Future A, much is attempted, capabilities are limited and
major failures are frequent. In the backward Future B, strong pressures are
present to restrict computer applications to those within the limited capabili-
ties of the software practitioners and their customers. These systems are usu-
ally successfully realized, but of course much is left undone. In the celestial
Future C, the competence of the average software practitioner has been
developed to such a high level that even very complex applications are nor-
mally implemented without major difficulty or problems of a fundamental
nature. The extreme Future A can be simply described as a reckless future;
Future B, reactionary; and Future C, radical.
Today we are between Future A and Future B, somewhat closer to Future
A (see the case examples in section 2 above). Many trends and developments
in data processing, especially the advent of the microcomputer, will result in
considerable pressure to apply computer technology much more extensively
throughout society in the next decades [5,10]. This will push us even closer to
the point representing Future A. If we decide to develop our professional
software capability much more extensively in the future, we can deflect our
path away from Future A and toward Future C. If we do not decide to do so,
the catastrophic collapses characteristic of Future A can be expected to give
rise to a wave of public reaction leading us to Future B.
Let us look at each of the futures A, B and C in more detail:
The reckless, audacious Future A
A software corollary to Parkinson’s Law and the Peter Principle characterizes
Future A particularly well: Software developers will conceive and try to build
ever more complicated systems until the limit of their ability to cope with
complexity is exceeded.
Despite our software problems such as those outlined in section 2 above,
there is today among broad segments of society considerable optimism and
confidence in our computer based future. Futurologists predict wonderful
things (see e.g. Evans [5]). There is, however, a great danger that this
‘wonderful’ future will not turn out as hoped, but instead as follows:
® Because of an error in software in an air traffic control system, four
jumbo jets collided over Paris one cloudy morning. All 1631 passengers
and crew members as well as 1000 people on the ground were killed.
The ensuing traffic jam blocked the area for two days.

® After an extended period of financial difficulty, one of the largest com-
panies in a medium sized European country went into bankruptcy. The
detailed reasons were not determined. Only one thing was really clear:
the company’s information and communication systems were in such a
state that the company had become unmanageable.

© A thirty story building collapsed during construction. The design was
reexamined in detail. Mistakes in the calculations of stresses in critical
structural elements were discovered. These calculations had originally
been done by computers whose programs contained errors.

30



At the turn of the millennium 1999-2000, business in the computerized
economies of the world all but collapsed. For bills rendered in 1999 but
due in 2000, overdue notices were issued already in 1999, charging
interest for some 99 years. After January 1, 2000, many systems failed to
issue overdue notices for amounts due in 1999 but not yet paid. The
cause: computer software and data bases which provided only 2 digits
for the year.

When such incidents occur sufficiently often, a public reaction can be

expected. Depending upon whether the reaction is directed against computer
applications as such or against the inadequate capabilities of the software
developers, pressure will arise which will push us in the direction of Future B
or Future C.

The reactionary, backward Future B

If Future B comes to be, software related situations something like the fol-
lowing may become typical:

A law was passed which placed very severe restrictions on computerized
air traffic control systems. Particularly onerous were requirements for
high levels of public liability insurance coverage. Shortly after passage of
the new law, a governmental agency announced that a newly completed
system would not be implemented. The costs of fulfilling the new legal
requirements were so high that the system could no longer be economi-
cally justified.

Members of the interest group ‘Ban the Computer’ discovered that
applied research was being conducted on a computerized vehicle gui-
dance and control system for automobile highways. They organized a
massive two day ‘sit in and lie in’ strike on all major roads within 50 km
of the headquarters of a company which was funding the project.
Threats of violence were directed at the project’s chief scientists and
engineers.

The radical, celestial Future C
In comparison to Futures A and B a description of Future C seems a bit dull,
because everything functions well, as planned:

A computerized, fully automated air traffic control system which had
operated uneventfully and error free since its installation several years
earlier suddenly discovered that two aircraft were on a collision course,
only 45 seconds flying time apart. The emergency subsystem automati-
cally took control and guided them safely apart. Shortly thereafter, the
system informed the (human) flight monitors on the ground and on
board the aircraft involved about the incident. The cause was identified
as a traffic volume which exceeded the system’s design specifications by
34%.

A computerized control system for a nuclear reactor discovered an
operator’s error and issued an appropriate warning. Two successive
actions recommended by the system were overridden by the human
operator. The system was finally compelled to take over control and shut

31



down the reactor. In the ensuing investigation, the operator stated that
the chain of events took place so fast that a human was incapable of
making rational, considered decisions effectively. All concerned agreed
that safety regulations should be revised to require fully automatic con-
trol over such potentially dangerous processes.

® A study of the software industry showed that the ‘debugging’ and test
phase of typical larger software development projects accounted for
approximately 10% of the total effort, compared with some 50% twenty
years earlier. Of 2500 projects included in the study, 3 were unsuccessful.
The report also stated that ‘practicing software developers are now more
highly educated than ever before. The average coding technician has
completed a three year technical training program; the typical semi-
professional software designer, a four year university course; and every
software engineer, at least a five year university course.” The study also
found that all software engineers regularly read professional articles
available through the various on-line professional literature services.
These services were used regularly by 83% of the semi-professionals and
by 31% of the coding technicians.

4. The path from today to tomorrow

Who must do what to achieve a better software future? Everyone directly
concerned with designing and developing software as well as everyone
involved in their education and training must take active steps to break the
vicious circle at several points simultaneously. An attack at one point only
would have no lasting effect; the positive feedback in the vicious circle would
counteract any such perturbation and would serve to maintain the status quo.

It should be apparent that academic institutions must play a key role in
bringing about a significant improvement. Especially in the early stages must
academic institutions play a leading role in building a sufficiently widespread
and qualitatively adequate base upon which software engineering can be
founded. Success here is a necessary (but not sufficient) condition for a major
and lasting improvement in the practice of software development.

Already in the 1940’s Norbert Wiener described computer programming
(he used the term ‘taping’) as ‘a highly skilled task for a professional man of
of a very specialized type’ [14]. Edsger Dijkstra said much later ‘Program-
ming is one of the most difficult branches of applied mathematics’ ([4], p.
129). There is no path leading to a mastery of this field in practice which
does not pass through a good tertiary education in general and mathematics
in particular.

We have not yet chosen our path to our software future. Do we want to
proceed first toward Future A and then to be deflected to Future B? Or do
we want to take the perhaps more difficult but certainly more promising path
to Future C?

32



radical
Future C

9

Future A Future B
reckless reactionary

Fig. 4. Possible paths to the future

Literature

(1]

(2]
(3]

Baber, R.L., "Informatikausbildung in der Bundesrepublik Deutsch-
land: Der zukunftige Preis des gegenwartigen Nichthandelns”,
Informatik-Spektrum, 6(1983), 1, p. 36.

Baber, R.L., Sofiware Reflected: The Socially Responsible Programming
of Our Computers, North-Holland Publishing Co., 1982.

Buxton, J.N. & Randell, B. (eds.), Software Engineering Techniques,
Report on a conference sponsored by the NATO Science Committee,
Rome, Italy, 27th to 31st October 1969, NATO Science Committee,
Brussels, 1970.

33



(4]
(5]
(6]

(7
(8]
9

[10]
(1]

Dijkstra, EW., Selected Writings on Computing: A Personal Perspective,
Springer-Verlag, 1982.

Evans, C., The Micro Millennium, Washington Square Press Pocket
Books, New York, 1981.

Fairly, R.E., Software Engineering Education: Status and Prospects,
Proceedings of the Twelfth Hawaii International Conference on System
Sciences, Pt. 1, Western Periodicals Ltd., North Hollywood, California,
US.A,, 1979, pp. 140-146.

Fleckenstein, W.O., “Challenges in Software Development”, Computer,
16(1983), 3, pp. 60-64.

Ganzhorn, K.E., ”Informatik im Uebergang”, Informatik-Spektrum,
6(1983), 1, pp. 1-6.

Gesellschaft fiar Informatik e. V., “Numerus Clausus in der Informatik
— hochwertige Arbeitspliatze von morgen durch unzureichende Lehr-
und Forschungskapazitaten von heute gefihrdet?”, Press Notice,
Informatik-Spektrum, 5(1982), 2, p. 126.

Haefner, K., Der ‘Grosse Bruder’, Econ Verlag, 1980.

Haefner, K., Die neue Bildungskrise, Birkhauser Verlag, 1982.

[12] Kriager, G., ”"Zur Situation der Informatikausbildung an den
Universititen der Bundesrepublik Deutschland”, Informatik-Spektrum,
5(1982), 2, pp. 71-73.

[13] Naur, P. & Randell, B. (eds.), Software Engineering, Report on a
conference sponsored by the NATO Science Committee, Garmisch,
Germany, 7-11 October 1968, NATO Scientific Affairs Division,
Brussels, 1969.

[14] Wiener, N., The Human Use of Human Beings: Cybernetics and Society,
Doubleday, 1954.

Address of the author:

Landgrav Gustav Ring 5
D-6380 Bad Homburg v.d.H.
Federal Republic of Germany

34



